Abstract
Two-dimensional transition metal dichalcogenides are of growing interest for flexible optoelectronics and power applications, due to their tunable optical properties, lightweight nature, and mechanical pliability. However, their thin nature inherently limits their optical absorption and, therefore, efficiency. Here, we propose a few-layer WSe2 optoelectronic device that achieves near perfect absorption through a combination of optical effects. The WSe2 can be scalably grown below an Al2O3 superstrate. Our device includes a corrugated back reflector, modeled as a plasmonic nanowire array. We investigate the entire range of widths of the corrugations in the back reflector, including the edge cases of a simple back mirror (width equal to period) and a Fabry-Perot cavity (zero width). We demonstrate the zero-mode enhancement arising from the back reflector, the weakly coupled enhancement arising from the Fabry-Perot cavity, and the strongly coupled enhancement arising from the localized surface plasmon resonance of the nanowires, explain the physical nature of the spectral peaks, and theoretically model the hybridization of these phenomena using a coupled oscillator model. Our champion device exhibits 82% peak absorptance in the WSe2 alone, 92% in the WSe2 plus nanowires, and 98% total absorptance. Thus, we achieve a near-perfect absorber in which most of the absorption is in the few-layer WSe2, with a desirable device framework for integration with scalable growth of the WSe2, thereby making our designs applicable to a range of practical optoelectronic devices.
Funder
National Science Foundation
U.S. Department of Defense
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献