Model-driven terahertz image reconstruction method for debonding defects in thermal barrier coatings

Author:

Cao Binghua,Li Hongxi,Fan Mengbao1,Sun Fengshan1,Ye Bo2

Affiliation:

1. China University of Mining and Technology

2. Kunming University of Science and Technology

Abstract

A terahertz imaging system is considered to be an effective method to study the thermal barrier coating defects in gas turbine engines. However, due to the influence of the system hardware and terahertz wavelength, the imaging system has slow acquisition efficiency, low image resolution, and serious edge blur, which cannot meet the demand for defect detection. To overcome the above defects, a model-driven terahertz image reconstruction method is proposed, which uses simulation data to build datasets, reduces the dependence on experimental data, and has a good reconstruction effect on experimental images. A fusion loss function based on the edge intensity was designed to optimize the edge effect of reconstructed images. Compared with the bicubic, SRCNN, and VDSR methods, the proposed method can achieve better results in terms of visual and evaluation indices for the reduced terahertz images. It is proved that this method can effectively restore the defect contour in the terahertz image, sharpen the edge of the image, and improve the image quality. It has a good application value in the industry.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Young and Middle-Aged Academic and Technical Leaders Reserve Talents Project of Yunnan Province

The Postgraduate Research & Practice Innovation Program of Jiangsu Province

The Graduate Innovation Program of China University of Mining and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3