Combined Terahertz Pulsed Imaging and Optical Coherence Tomography Detection Method for Multiple Defects in Thermal Barrier Coatings

Author:

Luo Manting1ORCID,Zhong Shuncong23ORCID,Huang Yi23ORCID,Zhang Zhenghao23,Tu Wanli4ORCID

Affiliation:

1. School of Mechanical Electrical and Information Engineering, Putian University, Putian 351100, China

2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

3. Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, Fuzhou University, Fuzhou 350108, China

4. Marine Engineering Institute, Jimei University, Xiamen 361021, China

Abstract

While thermal barrier coatings (TBCs) are being sprayed onto aero-engine turbine blades, or while the engine blade is working, high temperatures and strong impact forces will damage TBCs under thermal cycles, resulting in the coating peeling off from the blades. The current method of using ECT, IRT, or another method alone cannot achieve the real-time detection of coating defects with both high precision and high penetration power. Two detection methods, namely, terahertz pulsed imaging (TPI) and optical coherence tomography (OCT), were combined to evaluate typical defects observed in TBCs (including internal debonding cracks, surface high-temperature cracks, and surface etched cracks). The results showed that the OCT system successfully obtained the micron-level axial resolution, but the detection depth of the OCT system was limited. The TPI system achieved a higher penetration depth than OCT—hence, it can be used for the nondestructive detection and evaluation of the internal debonding defects in the sample—but its resolution needs to be improved. Following this conclusion, a method is proposed using TPI and OCT concurrently for the nondestructive testing and quantitative evaluation of TBCs on etched cracks, thus achieving progress both in terms of depth and resolution. In our experiment, defects with a depth of 519 μm and a width of 100 μm were measured. The proposed method is suitable for situations where multiple defects in TBC samples of blades need to be detected simultaneously during the working process. When there are defects deep inside the sample, more small cracks on the surface can be evaluated to achieve a combination of depth and accuracy.

Funder

Youth Fund of the National Natural Science Foundation of China

Youth Fund of the Fujian Provincial Natural Science Foundation

Fujian Provincial Natural Science Foundation

Fujian Province science and technology innovation key research and industrialization projects

Open Project of Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3