Measurement of natural frequencies and mode shapes of transparent insect wings using common-path ESPI

Author:

Ma Yinhang12ORCID,Quan Chenggen2ORCID,Jiang Hanyang3ORCID,He Xiaoyuan1,Yang Fujun1

Affiliation:

1. Southeast University

2. National University of Singapore

3. Zhejiang University of Technology

Abstract

In this study, a common-path electronic speckle pattern interferometry system which upholds the natural property of transparency of insect’s wings has been developed to measure the wings’ natural frequencies and mode shapes for the first time. A novel base-exciting method was designed to enable the simultaneous application of sinusoidal and static forces to excite wings and introduce an additional phase. The moiré effect induced by the amplitude modulation was employed to accurately recognize the resonance state. Subsequently, the mode shapes were visualized by phase-shifting and real-time frame subtraction. Eight pairs of forewings from cicadas were investigated. The first three order natural frequencies of the wings are approximately 145 Hz, 272 Hz and 394 Hz, respectively, which are dispersed to prevent modal coupling. The cambered mode shapes exhibit a strongly spanwise-chordwise anisotropy flexural stiffness distribution, generally dominated by bending and twisting deformation. The details of the high-order mode shapes show that the tip exhibits distinct deformation, indicating more flexibility to cope with external impact load, and the nodal lines usually comply with the direction of the wing veins in higher modes, substantiating the fact that the veins play an important role as stiffeners of the membrane. The results are in excellent agreement with the dynamic performance of previous studies, which will potentially affect a broader community of optical measurement specialists and entomologists to enhance our understanding of time-averaged interferograms and insect flights.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

China Scholarship Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3