Accurate determination of the elastic moduli of optimized cantilever beams by efficient time-averaged ESPI system

Author:

Ma YinhangORCID,Quan ChenggenORCID,Yang Boshuo,Liu Liu,Lu Guangchen,He XiaoyuanORCID,Yang Fujun

Abstract

Abstract Elastic moduli, including Young’s modulus, shear modulus, bulk modulus, etc, are key parameters that are used to characterize the ability of a solid material to resist various types of deformation. The moduli can be extracted from the natural frequencies of a cantilever beam. In this paper, the relationships between moduli and natural frequencies, for the first time, are quantified by the finite element method. The optimized three-dimensional proportion of the cantilever beam is selected to be implemented simple error compensation. Experimentally, to precisely obtain the natural frequencies of the cantilever beam, an efficient time-averaged electronic speckle pattern interferometry(ESPI) system has been developed. The efficiency and precision are reflected in the following aspects: firstly, according to the slender character of the cantilever beam, a large shear optical path arrangement is designed to facilitate isolation from environmental interference; secondly, a resonance search method, based on the moiré effect is employed to recognize the natural frequencies accurately and efficiently; thirdly, a novel dynamic phase-shifting method is proposed based on the arrangement of the large shear optical path for clearer visualization of the mode shape of the cantilever beam. The proposed methods are verified by three kinds of common materials. The results suggest that Young’s modulus and shear modulus derived from natural frequencies are higher than the known value, and the error compensation can significantly reduce the calculation error. Furthermore, the experiments carried out on the woven carbon fiber reinforced plastic laminates illustrate the potential of the proposed methods in the evaluation of elastic moduli of composites. Given that the exciter attached to the specimen surfaces can be replaced with some special counterparts, the proposed ESPI system has considerable potential to test the objects loaded in some extreme environments, e.g. at high temperatures or underwater, where contact detection methods are difficult to be implemented.

Funder

Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

China Scholarship Council

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3