Abstract
Monitoring laser ablation when using high power lasers can be challenging due to plasma obscuring the view of the machined sample. Whilst the appearance of the generated plasma is correlated with the laser ablation conditions, extracting useful information is extremely difficult due to the highly nonlinear processes involved. Here, we show that deep learning can enable the identification of laser pulse energy and a prediction for the appearance of the ablated sample, directly from camera images of the plasma generated during single-pulse femtosecond ablation of silica. We show that this information can also be identified directly from the acoustic signal recorded during this process. This approach has the potential to enhance real-time feedback and monitoring of laser materials processing in situations where the sample is obscured from direct viewing, and hence could be an invaluable diagnostic for laser-based manufacturing.
Funder
Engineering and Physical Sciences Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献