Investigation of Laser Ablation Quality Based on Data Science and Machine Learning XGBoost Classifier

Author:

Tsai Chien-Chung1,Yiu Tung-Hon1

Affiliation:

1. Department of Semiconductor and Electro-Optical Technology, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan

Abstract

This work proposes a matching data science approach for the laser ablation quality, reb, the study of Si3N4 film based on supervised machine learning classifiers in the CMOS-MEMS process. The study demonstrates that there exists an energy threshold, Eth, for laser ablation. If the laser energy surpasses this threshold, increasing the interval time will not contribute significantly to the recovery of pulse laser energy. Thus, reb enhancement is limited. When the energy is greater than 0.258 mJ, there exists a critical value of interval time at which the reb value is relatively low for each energy level, respectively. In addition, the variation of reb, Δreb, is independent of the interval time at the invariant point of energy between 0.32 mJ and 0.36 mJ. Energy and interval time exhibit a Pearson correlation of 0.82 and 0.53 with reb, respectively. To maintain Δreb below 0.15, green laser ablation of Si3N4 at operating energies of 0.258–0.378 mJ can adopt a baseline interval time of the initial baseline multiplied by 1/∜2. Additionally, for operating energies of 0.288–0.378 mJ during Si3N4 laser ablation, Δreb can be kept below 0.1. With the forced partition methods, namely, the k-means method and percentile method, the XGBoost (v 2.0.3) classifier maintains a competitive accuracy across test sizes of 0.20–0.40, outperforming the machine learning algorithms Random Forest and Logistic Regression, with the highest accuracy of 0.78 at a test size of 0.20.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3