Characterization of optical fibers doped with nanoparticles for distributed displacement sensing

Author:

Silveira Mariana,Díaz CamiloORCID,Avellar Letícia,Blanc Wilfried1ORCID,Marques Carlos2ORCID,Leal-Junior ArnaldoORCID

Affiliation:

1. Université Côte d’Azur

2. University of Aveiro

Abstract

High-scattering optical fibers have emerged as a key component in distributed sensing systems, primarily due to their capacity to enhance signal-to-noise ratio. This paper presents an experimental characterization of optical fibers doped with oxide nanoparticles for displacement sensing. They were manufactured using the phase-separation technique and different doping compounds, including calcium, strontium, lanthanum and magnesium. The Rayleigh backscattering (RBS) signatures in time and frequency domains were acquired using an Optical Backscatter Reflectometer (OBR). The maximum representative length, backscattering gain and strain sensitivity were evaluated. The results indicate that the fiber co-doped with magnesium and erbium chlorides offered the best compromise between strain sensitivity (0.96 pm/μϵ) and maximum length (17 m). For conditions of single and multiple perturbations, strain saturation was reached at ≥7000 μm and <1500 μm, respectively. In addition, the results reveal that, under a condition of variable temperature (30-60 °C), the sensor response becomes significantly nonlinear over length, requiring a technique for temperature cross-sensitivity mitigation that accounts for nonlinearities in sensitivity and hysteresis.

Funder

Fundação para a Ciência e a Tecnologia

Financiadora de Estudos e Projetos

Fundação de Amparo à Pesquisa e Inovação do Espírito Santo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3