Machine learning-based analysis of multiple simultaneous disturbances applied on a transmission-reflection analysis based distributed sensor using a nanoparticle-doped fiber

Author:

Avellar Letícia1,Frizera Anselmo1ORCID,Rocha Helder1,Silveira Mariana1,Díaz Camilo1ORCID,Blanc Wilfried2ORCID,Marques Carlos3ORCID,Leal-Junior Arnaldo1ORCID

Affiliation:

1. Federal University of Espirito Santo

2. Université Côte d’Azur

3. Universidade de Aveiro

Abstract

Photonic technology combined with artificial intelligence plays a key role in the development of the latest smart system trends, integrating cutting-edge technology with machine learning models. This paper proposes a transmission-reflection analysis based system using dielectric nanoparticle-doped fiber combined with artificial intelligence to address one of the major problems in the distributed sensing approach: reducing the cost while maintaining high spatial resolution to close the gap between distributed sensors and the general public. Machine learning-based models are designed to classify the perturbed positions when the same force is used and force regression when different forces are applied on each position. The results show an accuracy of 99.43% in the position classification of multiple disturbances and an rms error of 1.53 N in the force regression, which represents 5% of the force range. In addition, a smart environment using the current system is proposed, which presented 100% accuracy in identifying the positions of different persons in the environment. This smart environment enables remote home care of patients with high reliability, intelligent decision-making, and a predictive capability.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Financiadora de Estudos e Projetos

Agence Nationale de la Recherche

Fundação para a Ciência e a Tecnologia

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3