Automated instrument-tracking for 4D video-rate imaging of ophthalmic surgical maneuvers

Author:

Tang Eric M.1ORCID,El-Haddad Mohamed T.1ORCID,Patel Shriji N.2,Tao Yuankai K.1

Affiliation:

1. Vanderbilt University, Department of Biomedical Engineering

2. Vanderbilt University Medical Center

Abstract

Intraoperative image-guidance provides enhanced feedback that facilitates surgical decision-making in a wide variety of medical fields and is especially useful when haptic feedback is limited. In these cases, automated instrument-tracking and localization are essential to guide surgical maneuvers and prevent damage to underlying tissue. However, instrument-tracking is challenging and often confounded by variations in the surgical environment, resulting in a trade-off between accuracy and speed. Ophthalmic microsurgery presents additional challenges due to the nonrigid relationship between instrument motion and instrument deformation inside the eye, image field distortion, image artifacts, and bulk motion due to patient movement and physiological tremor. We present an automated instrument-tracking method by leveraging multimodal imaging and deep-learning to dynamically detect surgical instrument positions and re-center imaging fields for 4D video-rate visualization of ophthalmic surgical maneuvers. We are able to achieve resolution-limited tracking accuracy at varying instrument orientations as well as at extreme instrument speeds and image defocus beyond typical use cases. As proof-of-concept, we perform automated instrument-tracking and 4D imaging of a mock surgical task. Here, we apply our methods for specific applications in ophthalmic microsurgery, but the proposed technologies are broadly applicable for intraoperative image-guidance with high speed and accuracy.

Funder

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3