Temperature-insensitive polarimetric vibration sensor

Author:

Han Chunyang1ORCID,Zhao Chenyu1,Ding Hui1,Chen Chen1

Affiliation:

1. Xi’an Jiaotong University

Abstract

Vibration measurement is a frequent measurement requirement in a number of areas. Optical vibration sensors have many advantages over electrical counterparts. A common approach is to optically detect the vibration induced mechanical movement of a cantilever. Nevertheless, their practical applications are hindered by the cross-sensitivity of temperature and dynamic instability of the mechanical structure, which lead to unreliable vibration measurements. Here, we demonstrate a temperature insensitive vibration sensor that involves an enclosed suspended cantilever integrated with a readout fiber, providing in-line measurement of vibration. The cantilever is fabricated from a highly birefringent photonic crystal fiber by chemical etching and fused to a single-polarization fiber. Mechanical vibration induced periodic bending of the cantilever can significantly modify the state of polarization of the light that propagates along the photonic crystal fiber. The single-polarization fiber finally converts the state of polarization fluctuation into the change of output optical power. Therefore, the vibration could be demodulated by monitoring the output power of the proposed structure. Due to the special design of the structure, the polarization fluctuation induced by a variation of the ambient temperature can be significantly suppressed. The sensor has a linear response over the frequency range of 5 Hz to 5 kHz with a maximum signal-to-noise ratio of 60 dB and is nearly temperature independent.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3