Resolution improvement of photothermal microscopy by the modulated difference method

Author:

Wang Yonghui1ORCID,Wang Fei1,Song Peng12,Liu Junyan1ORCID

Affiliation:

1. HIT Wuhu Robot Technology Research Institute

2. Harbin Institute of Technology

Abstract

Photothermal microscopy (PTM) was developed to image non-fluorescent objects. In the past two decades, PTM has reached single-particle and single-molecule sensitivity and has been used in the fields of material science and biology. However, PTM is a far-field imaging method whose resolution is restricted by the diffraction limits. This Letter reports a resolution improvement approach for photothermal microscopy called modulated difference PTM (MD-PTM), which utilizes Gaussian and doughnut formalism heating beams that are modulated at the same frequency but are of opposite phase to generate the photothermal signal. Furthermore, the opposite phase characteristics of the photothermal signals are applied to determine the objective profile from the PTM magnitude, and this helps to improve the lateral resolution of PTM. The lateral resolution is related to the difference coefficient between the Gaussian and doughnut heating beams; an increase in the difference coefficient causes a larger sidelobe of the MD-PTM amplitude, which readily forms an artifact. A pulse-coupled neural network (PCNN) is employed for phase image segmentations of MD-PTM. We experimentally study the micro-imaging of gold nanoclusters and crossed nanotubes using MD-PTM, and the results indicate that MD-PTM has merit in terms of improving the lateral resolution.

Funder

China Scholarship Council

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China

Heilongjiang Provincial Postdoctoral Science Foundation

Chinese Aeronautical Establishment

The Program of Introducing Talents of Discipline of Universities

Self-planned Task of State Key Laboratory of Robotics and Syste

HIT Wuhu Robot Technology Research Institute

Strategic Cooperation Program of the World Top Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3