Deep learning empowers photothermal microscopy with super-resolution capabilities

Author:

Wang Yonghui1ORCID,Yue Zhuoyan1,Wang Fei1,Song Peng1,Liu Junyan1ORCID

Affiliation:

1. HIT Wuhu Robot Technology Research Institute

Abstract

In the past two decades, photothermal microscopy (PTM) has achieved sensitivity at the level of a single particle or molecule and has found applications in the fields of material science and biology. PTM is a far-field imaging method; its resolution is restricted by the diffraction limits. In our previous work, the modulated difference PTM (MDPTM) was proposed to improve the lateral resolution, but its resolution improvement was seriously constrained by information loss and artifacts. In this Letter, a deep learning approach of the cycle generative adversarial network (Cycle GAN) is employed for further improving the resolution of PTM, called DMDPTM. The point spread functions (PSFs) of both PTM and MDPTM are optimized and act as the second generator of Cycle GAN. Besides, the relationship between the sample’s volume and the photothermal signal is utilized during dataset construction. The images of both PTM and MDPTM are utilized as the inputs of the Cycle GAN to incorporate more information. In the simulation, DMDPTM quantitatively distinguishes a distance of 60 nm between two nanoparticles (each with a diameter of 60 nm), demonstrating a 4.4-fold resolution enhancement over the conventional PTM. Experimentally, the super-resolution capability of DMDPTM is verified by restored images of Au nanoparticles, achieving the resolution of 114 nm. Finally, the DMDPTM is successfully employed for the imaging of carbon nanotubes. Therefore, the DMDPTM will serve as a powerful tool to improve the lateral resolution of PTM.

Funder

Natural Science Foundation of Heilongjiang Province

China Postdoctoral Science Foundation

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

Self-Planned Task

State Key Laboratory of Robotics and System

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3