Massively distributed fiber strain sensing using Brillouin lasing

Author:

Murray Joseph B.1ORCID,Cerjan Alexander2ORCID,Redding Brandon1ORCID

Affiliation:

1. U.S. Naval Research Laboratory

2. Sandia National Laboratories

Abstract

Brillouin based distributed fiber sensors present a unique set of characteristics amongst fiber sensing architectures. They are able to measure absolute strain and temperature over long distances, with high spatial resolution, and very large dynamic range in off-the-shelf fiber. However, Brillouin sensors traditionally provide only modest sensitivity due to the weak dependence of the Brillouin frequency on strain and the high signal to noise ratio required to identify the resonance’s peak frequency to within a small fraction of its linewidth. Recently, we introduced a technique which substantially improves the precision of Brillouin fiber sensors by exciting a series of lasing modes in a fiber loop cavity that experience Brillouin amplification at discrete locations in the fiber. The narrow-linewidth and high intensity of the lasing modes enabled ultra-low noise Brillouin sensors with large dynamic range. However, our initial demonstration was only modestly distributed: measuring strain at 40, non-contiguous positions along a 400 m fiber. In this work, we greatly extend this methodology to enable fully distributed sensing at 1000 contiguous locations along 3.5 km of fiber—an order of magnitude increase in sensor count and range. This highly-multiplexed Brillouin fiber laser sensor provides a strain noise as low as 34 nɛ/√Hz and we analyze the limiting factors in this approach.

Funder

National Nuclear Security Administration

U.S. Naval Research Laboratory

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3