Second-order coherence across the Brillouin lasing threshold

Author:

Cryer-Jenkins E. A.ORCID,Enzian G.1ORCID,Freisem L.,Moroney N.,Price J. J.,Svela A. Ø.,Major K. D.ORCID,Vanner M. R.ORCID

Affiliation:

1. Niels Bohr Institute, University of Copenhagen

Abstract

Brillouin–Mandelstam scattering is one of the most accessible nonlinear optical phenomena and has been widely studied since its theoretical discovery one hundred years ago. The scattering mechanism is a three-wave-mixing process between two optical fields and one acoustic field and has found a broad range of applications spanning microscopy to ultra-narrow-linewidth lasers. Building on the success of utilizing this nonlinearity at a classical level, a rich avenue is now being opened to explore Brillouin scattering within the paradigm of quantum optics. Here, we take a key step in this direction by employing quantum optical techniques yet to be utilized for Brillouin scattering to characterize the second-order coherence of Stokes scattering across the Brillouin lasing threshold. We use a silica microsphere resonator and single-photon counters to observe the expected transition from bunched statistics of thermal light below the lasing threshold to Poissonian statistics of coherent light above the threshold. Notably, at powers approaching the lasing threshold, we also observe super-thermal statistics, which arise due to instability and a “flickering” in and out of lasing as the pump field is transiently depleted. The statistics observed across the transition, including the “flickering,” are a result of the full nonlinear three-wave-mixing process and cannot be captured by a linearized model. These measurements are in good agreement with numerical solutions of the three-wave Langevin equations and are well demarcated by analytical expressions for the instability and the lasing thresholds. These results demonstrate that applying second-order-coherence and photon-counting measurements to Brillouin scattering provides new methods to advance our understanding of Brillouin scattering itself and progress toward quantum-state preparation and characterization of acoustic modes.

Funder

The Aker Scholarship

Royal Society

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council

UK Research and Innovation

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3