Imaging properties of microsphere superlenses with varying background refractive indices under inclined illumination

Author:

Li Shendi1,Luo Hao2ORCID,Liu Fengli1,Zhang Tianyao2,Wang Xiaoduo,Liu Lianqing,Yu Haibo

Affiliation:

1. Shenyang Ligong University

2. University of Chinese Academy of Sciences

Abstract

Microsphere lenses can overcome the optical diffraction limit and can be used to observe features smaller than 200 nm under white light. Inclined illumination benefits from the second refraction of evanescent waves in the microsphere cavity, prohibiting the influence of background noise and improving the imaging resolution and quality of the microsphere superlens. Currently, there is a consensus that microspheres immersed in a liquid environment can improve imaging quality. Microsphere imaging under inclined illumination is performed using barium titanate microspheres immersed in an aqueous environment. However, the background medium of a microlens varies depending on its diverse applications. In this study, the effects of continuously changing background media on the imaging properties of microsphere lens under inclined illumination are investigated. The experimental results demonstrate that the axial position of the microsphere photonic nanojet changes with respect to the background medium. Consequently, owing to the refractive index of the background medium, the imaging magnification and the position of the virtual image change. Using a sucrose solution and polydimethylsiloxane with the same refractive index, we demonstrate that the imaging performance of microspheres is related to the refractive index rather than the background medium type. This study helps associate microsphere superlenses with a more universal application spectrum.

Funder

National Natural Science Foundation of China

CAS Interdisciplinary Innovation Team

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3