Microsphere-assisted dark-field microscopy based on a fully immersed low refractive index microsphere

Author:

Wang Jianguo,Jiang Rui,Yang Songlin1ORCID,Cao Yurong,Ye Yong-Hong

Affiliation:

1. Southeast University

Abstract

Here we find that a fully immersed low refractive index SiO2 microsphere (or a microcylinder, a yeast cell) can clearly distinguish a sample with sub-diffraction features in dark-field illumination mode. The resolvable area of the sample by microsphere-assisted microscopy (MAM) is composed of two regions. One region locates below the microsphere, and a virtual image of this part of the sample is formed by the microsphere first and then the virtual image is received by the microscope. The other region is around the edge of the microsphere, and this part of the sample is directly imaged by the microscope. The simulated region of the enhanced electric field on the sample surface formed by the microsphere is consistent with the resolvable region in the experiment. Our studies show that the enhanced electric field on the sample surface generated by the fully immersed microsphere plays an important role in dark-field MAM imaging, and this finding will have a positive effect on exploring novel mechanisms in resolution improvement of MAM.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3