Enhanced poling and infiltration for highly efficient electro-optic polymer-based Mach-Zehnder modulators

Author:

Taghavi Iman12,Dehghannasiri Razi1,Fan Tianren1ORCID,Tofini Alexander2,Moradinejad Hesam1ORCID,Efterkhar Ali. A.1,Shekhar Sudip2,Chrostowski Lukas2,Jaeger Nicolas A. F.2,Adibi Ali1

Affiliation:

1. Georgia Institute of Technology

2. University of British Columbia

Abstract

An ultra-narrow 40-nm slotted waveguide is fabricated to enable highly efficient, electro-optic polymer modulators. Our measurement results indicate that VπL’s below ∼ 1.19 V.mm are possible for the balanced Mach-Zehnder modulators using this ultra-narrow slotted waveguide on a hybrid silicon-organic hybrid platform. Our simulations suggest that VπL’s can be further reduced to ∼ 0.35 V.mm if appropriate doping is utilized. In addition to adapting standard recipes, we developed two novel fabrication processes to achieve miniaturized devices with high modulation sensitivity. To boost compactness and decrease the overall footprint, we use a fabrication approach based on air bridge interconnects on thick, thermally-reflowed, MaN 2410 E-beam resist protected by an alumina layer. To overcome the challenges of high currents and imperfect infiltration of polymers into ultra-narrow slots, we use a carefully designed, atomically-thin layer of TiO2 as a carrier barrier to enhance the efficiency of our electro-optic polymers. The anticipated increase in total capacitance due to the TiO2 layer is negligible. Applying our TiO2 surface treatment to the ultra-narrow slot allows us to obtain an improved index change efficiency (∂n/∂V) of ∼ 22% for a 5 nm TiO2 layer. Furthermore, compared to non-optimized cases, our peak measured current during poling is reduced by a factor of ∼ 3.

Funder

National Science Foundation

Canada Foundation for Innovation

B.C. Knowledge Development

SiEPICfab

Natural Sciences and Engineering Research Council of Canada

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3