Fast and accurate computation of polar harmonic Fourier moments for image description

Author:

Yang Siyu,Deng Ansheng

Abstract

Continuous orthogonal moments are widely used in various image techniques due to their simplicity and good rotational invariance and stability. In recent years, numerous excellent continuous orthogonal moments have been developed, among which polar harmonic Fourier moments (PHFMs) exhibit strong image description capabilities. However, the numerical integration error is large in the calculation, which seriously affects the calculation accuracy, especially in higher-order calculation. In this paper, a continuous orthogonal moments-fast and accurate PHFM (FAPHFM) is proposed. It utilizes the polar pixel tiling technique to reduce numerical errors in the computation; this method particularly improves the accuracy of higher-order moments of traditional PHFMs. However, as accuracy increases, calculation complexity also increases. To address this issue, an eight-way symmetric/anti-symmetric calculation of the angular and radial functions was performed using the symmetry and anti-symmetry of traditional PHFMs, and clustering of pixels was performed as a way to improve the computational speed. The experimental results show that FAPHFMs perform better in image reconstruction (including noise), with higher computational accuracy, lower time complexity, and better image description ability.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quaternion fast and accurate polar harmonic Fourier moments for color image analysis and object recognition;Journal of the Optical Society of America A;2024-04-16

2. Image watermarking algorithm based on localized FAPHFMs magnitude;Fourth International Conference on Computer Vision and Data Mining (ICCVDM 2023);2024-02-19

3. Statistical Image Watermark Algorithm for FAPHFMs Domain Based on BKF–Rayleigh Distribution;Mathematics;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3