Robust Zero-Watermarking of Color Medical Images Using Multi-Channel Gaussian-Hermite Moments and 1D Chebyshev Chaotic Map

Author:

Khafaga Doaa SamiORCID,Karim Faten Khalid,Darwish Mohamed M.,Hosny Khalid M.ORCID

Abstract

Copyright protection of medical images is a vital goal in the era of smart healthcare systems. In recent telemedicine applications, medical images are sensed using medical imaging devices and transmitted to remote places for screening by physicians and specialists. During their transmission, the medical images could be tampered with by intruders. Traditional watermarking methods embed the information in the host images to protect the copyright of medical images. The embedding destroys the original image and cannot be applied efficiently to images used in medicine that require high integrity. Robust zero-watermarking methods are preferable over other watermarking algorithms in medical image security due to their outstanding performance. Most existing methods are presented based on moments and moment invariants, which have become a prominent method for zero-watermarking due to their favorable image description capabilities and geometric invariance. Although moment-based zero-watermarking can be an effective approach to image copyright protection, several present approaches cannot effectively resist geometric attacks, and others have a low resistance to large-scale attacks. Besides these issues, most of these algorithms rely on traditional moment computation, which suffers from numerical error accumulation, leading to numerical instabilities, and time consumption and affecting the performance of these moment-based zero-watermarking techniques. In this paper, we derived multi-channel Gaussian–Hermite moments of fractional-order (MFrGHMs) to solve the problems. Then we used a kernel-based method for the highly accurate computation of MFrGHMs to solve the computation issue. Then, we constructed image features that are accurate and robust. Finally, we presented a new zero-watermarking scheme for color medical images using accurate MFrGHMs and 1D Chebyshev chaotic features to achieve lossless copyright protection of the color medical images. We performed experiments where their outcomes ensure the robustness of the proposed zero-watermarking algorithms against various attacks. The proposed zero-watermarking algorithm achieves a good balance between robustness and imperceptibility. Compared with similar existing algorithms, the proposed algorithm has superior robustness, security, and time computation.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project number , Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3