Carrier transport engineering in a polarization-interface-free ferroelectric PN junction for photovoltaic effect

Author:

Liu YapingORCID,Zhang Jiayi,Qin Tian,Yang Bo,Zhao ShifengORCID

Abstract

The carrier transport performances play key roles in the photoelectric conversion efficiency for photovoltaic effect. Hence, the low carrier mobility and high photogenerated carrier recombination in ferroelectric materials depress the separation of carriers. This work designs a ferroelectric polarization-interface-free PN junction composed with P-type semiconductor BiFeO3 (BFO) derived from the variable valence of Fe and N-type semiconductor BiFe0.98Ti0.02O3 (BFTO) through Ti donor doping. The integration of the ferroelectricity decides the PN junction without polarization coupling like the traditional heterojunctions but only existing carrier distribution differential at the interface. The carrier recombination in PN junction is significantly reduced due to the driving force of the built-in electric field and the existence of depletion layer, thereby enhancing the switching current 3 times higher than that of the single ferroelectric films. Meanwhile, the carrier separation at the interface is significantly engineered by the polarization, with open circuit voltage and short circuit current of photovoltaic effect increased obviously. This work provides an alternative strategy to regulate bulk ferroelectric photovoltaic effects by carrier transport engineering in the polarization-interface-free ferroelectric PN junction.

Funder

Natural Science Foundation of Inner Mongolia

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3