Heterogeneous integration photoferroelectrics for self-powered photoelectric detectors

Author:

Liu Yaping1ORCID,Zhang Jiayi1ORCID,Du Hongyu1ORCID,Qin Tian1ORCID,Yang Bo1ORCID,Zhao Shifeng1ORCID

Affiliation:

1. School of Physical Science and Technology, & Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University , Hohhot 010021, China

Abstract

The anomalous photovoltaic effect inherent in ferroelectric materials brings promising opportunities for self-powered photoelectric detectors. However, the photoelectric detection performances in photoferroelectrics are limited by the low photocurrent output due to the recombination and low separation ability of photogenerated carriers. This work proposes a heterogeneous integration technology for self-powered photoelectric detectors by designing a P-type/N-type/P-type (PNP) ferroelectric junction with sandwich structure, in which not only the photogenerated carrier separation is strengthened due to the enhanced polarization derived from the interface compressive stress, but also the carrier recombination is suppressed by the built-in electric field in the depletion layer. Thus, the photocurrent output in the PNP heterojunction is increased by more than seven times at 0 V bias compared with N-type ferroelectric film and exhibits excellent responsivity and detectivity. The temperature stability for repeatable time-resolved self-powered photocurrent demonstrates applicability in high temperature environments. This work provides a feasible strategy for high-performance self-powered photoelectric detectors by heterogeneous integration in photoferroelectrics, promoting ferroelectric photonic applications.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3