Internal phase control of coherent fiber laser array without ambiguous phase based on double wavelength detection

Author:

Chang Hongxiang1,Su Rongtao1,Chang Qi1ORCID,Long Jinhu1ORCID,Ma Pengfei1ORCID,Ma Yanxing1,Zhou Pu1

Affiliation:

1. National University of Defense Technology

Abstract

High-power fiber lasers have been widely utilized in manufacturing, medical care, and many other fields. Due to mode instability, nonlinear effects, and so on, the output power of a monolithic fiber laser is limited. Coherent beam combining (CBC) of fiber lasers is a promising way to obtain higher output power. An all-fiber CBC structure with internal phase detection has a compact construction and potential for a larger fiber laser array. For the existing internal active phase control of an all-fiber structure, π phase ambiguity always occurs because of double passing the fiber path. Additional compensation is needed under this condition, and the compactness of the system will decrease. In this paper, internal phase control of an all-fiber structure based on double wavelength detection without π -ambiguity is proposed. By adding a beacon laser with a different wavelength, phase locking of a coherent fiber laser array can be achieved internally without π -ambiguity. A corresponding math model is established, and a phase matched condition is derived. The spectral width of the beacon laser is analyzed, and the result shows that it can reach tens of nanometers with a proper optical path difference. Simulations of seven, 19, and 37 beams are carried out, and the results show that the structure proposed in this paper has the ability to achieve phase control with good robustness. The control bandwidth in the simulation is better than 1 kHz. By properly designing elements, the structure is expected to achieve high-power CBC of an all-fiber structure experimentally.

Funder

National Natural Science Foundation of China

Innovative Research Groups of Hunan Province

Training Program for Excellent Young Innovators of Changsha

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3