System design for coherent combined massive fiber laser array based on cascaded internal phase control

Author:

Long Jinhu1ORCID,Su Rongtao1,Hou Tianyue1ORCID,Chang Qi1ORCID,Jiang Min1,Chang Hongxiang1,Deng Yu1ORCID,Ma Yanxing1,Ma Pengfei1ORCID,Zhou Pu1

Affiliation:

1. National University of Defense Technology

Abstract

Coherent beam combining (CBC) of a fiber laser can scale the output power while maintaining high beam quality. However, phase detection and control remain a challenge for a high-power CBC system with a massive laser array. This paper provides a novel, to the best of our knowledge, cascaded phase-control technique based on internal phase detection and control, called the cascaded internal phase-control technique. The principle of the technique was introduced in detail, and the numerical simulations were carried out based on the stochastic parallel gradient descent (SPGD) algorithm. The results indicated that the cascaded internal phase-control technique was compatible with the massive laser array. Compared with the traditional CBC based on the SPGD algorithm, the control bandwidth could be improved effectively about seven times (120 steps) than the traditional SPGD algorithm (830 steps). Furthermore, the average root mean square of residual phase error was decreased to 0.03 rad ( λ / 209 ) with a laser array of 259 channels ( 7 37 ), which was 0.36 rad ( λ / 17 ) in the traditional SPGD algorithm. In addition, the element expanding capacity was analyzed. Since there is no large-aperture optical device in the phase-detection system, this technique has the advantage of freely designing the caliber of the laser emitting system. This paper could offer a reference for the high-power massive laser array system design and phase control.

Funder

National Natural Science Foundation of China

Training Program for Excellent Young Innovators of Changsha

Natural Science Foundation of Hunan Province

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3