Affiliation:
1. Beijing University of Posts and Telecommunications (BUPT)
2. BUPT
Abstract
We propose a photonic-aided dual-vector radio-frequency (RF) signal generation and detection scheme enabled by bandpass delta-sigma modulation and heterodyne detection. With the aid of the bandpass delta-sigma modulation, our proposed scheme is transparent to the modulation format of the dual-vector RF signals and can support the generation, wireless transmission, and detection of both single-carrier (SC) and orthogonal-frequency-division-multiplexing (OFDM) vector RF signals with high-level quadrature-amplitude-modulation (QAM) modulation. With the aid of the heterodyne detection, our proposed scheme can support up to W-band (75–110 GHz) dual-vector RF signal generation and detection. For the validation of our proposed scheme, we experimentally demonstrate the simultaneous generation of a SC-64QAM signal at 94.5 GHz and a SC-128QAM signal at 93.5 GHz and their error-free high-fidelity transmission over a 20-km single-mode fiber 28 (SMF-28) and a 1-m single-input single-output (SISO) wireless link at the W-band. To the best of our knowledge, this is the first time that delta-sigma modulation has been introduced into a W-band photonic-aided fiber-wireless integration system to achieve flexible and high-fidelity dual-vector RF signal generation and detection.
Funder
Beijing Institute of Technology Research Fund Program for Young Scholars
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献