Simultaneous wireless mm-wave transmission of both SC-modulated and OFDM-modulated high-order QAM signals enabled by bandpass delta-sigma modulation

Author:

Xie Tangyao,Xin Xiangjun12,Bi Jiahao,Yan Hengxin,Li Xinying,Pan Xiaolong

Affiliation:

1. Beijing University of Posts and Telecommunications (BUPT)

2. BUPT

Abstract

The application of dual vector millimeter-wave (mm-wave) signals in radio-over-fiber (RoF) systems represents a significant opportunity to enhance spectrum efficiency, transmission capacity, and access flexibility. In addition, facing the increasingly intricate application scenarios, the comprehensive exploitation of high-order quadrature-amplitude-modulation (QAM) signals with hybrid single-carrier (SC) and orthogonal-frequency-division-multiplexing (OFDM) modulation is also vital to rich systematic connotation. Based on bandpass delta-sigma modulation (BP-DSM) and heterodyne detection, we propose what we believe to be a novel scheme for the simultaneous wireless mm-wave transmission of both SC-modulated and OFDM-modulated high-order QAM signals. The innovation lies in the modulation-agnostic nature, accommodating both SC-modulated and OFDM-modulated vector radio-frequency (RF) signals. The BP-DSM is utilized to digitize two independent SC-modulated and OFDM-modulated high-order QAM signals into relatively simple sequences at the transmitter side. With the aid of an optical I/Q modulator, we can integrate both signals after BP-DSM to generate the desired optical quadrature-phase-shift keying (QPSK) signal carrying both information of two original high-order QAM signals. Facilitated by heterodyne detection and a single photodetector (PD), our scheme attains prowess in the detection of both SC-modulated and OFDM-modulated high-order signals. Based on our proposed scheme, we experimentally demonstrate the simultaneous wireless mm-wave transmission of both SC-modulated and OFDM-modulated 512QAM signals at 30-GHz mm-wave band, demonstrating bit-error-rates (BERs) below the hard decision forward error correction (HD-FEC) threshold of 3.8 × 10−3 after transmission over 10-km single-mode fiber (SMF) link and 1-m wireless link. In addition, we further investigate the performance impact between SC-modulated and OFDM-modulated high-order QAM signals, and experiment results indicate that the impact is virtually negligible. Moreover, the performance of the generated QPSK mm-wave signal is transparent to the QAM modulation formats of both SC-modulated and OFDM-modulated signals in our proposed scheme.

Funder

National Key Research and Development Program of China

National Natural Science Fund for Excellent Young Scientists Fund Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3