Abstract
Accurate and complete 3D measurement of complex high dynamic range (HDR) surfaces has been challenging for structured light projection technique. The behavior of spraying a layer of diffuse reflection material, which will inevitably incur additional thickness. Existing methods based on additional facilities will increase the cost of hardware system. The algorithms-based methods are cost-effective and nondestructive, but they generally require redundant patterns for image fusion and model training, which fail to be suitable for practicing automated 3D measurement for complex HDR surfaces. In this paper, a HDR surface 3D reconstruction method based on sharing demodulation phase unwrapping mechanism and multi-indicators guided phase fusion strategy is proposed. The division of the exposure interval is optimized via the image entropy to generate an optimal exposure sequence. The combination of temporal-spatial binary (TSB) encoding fringe patterns with time-integration strategy and the variable exposure mode of digital mirror device (DMD)-based projector with a minimum projection exposure time of 233μs enables the proposed approach to broadly adapt complex HDR surfaces. We propose an efficient phase analysis solution called sharing mechanism that wrapped phase sequences from captured different intensity fringe images are unwrapped through sharing the same group of misaligned Gray code (MGC) decoding result. Finally, a phase sequences fusion model guided by multi-indicators, including exposure quality, phase gradient smoothness and pixel effectiveness, is established to obtain an optimum phase map for final 3D reconstruction. Comparative experiments indicate that the proposed method can completely restore the 3D topography of HDR surfaces with the images reduction of at least 65% and the measurement integrity is maintained at over 98% while preserving the measurement accuracy and excluding the outliers.
Funder
National Natural Science Foundation of China
The central government guides local funds for science and technology development
Key research and development project of Sichuan province
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献