Lever-enabled milli-Newton mechanical force detection via a microbottle resonator

Author:

Wang Zijie,Zhang XiaobeiORCID,Zhang Qi,Cao ZongORCID,Yang Yong,Wang Tingyun

Abstract

We demonstrate a milli-Newton mechanical force sensor based on a whispering gallery mode microbottle resonator (MBR). A lever model is established by coupling the MBR with a tapered fiber, whose ratio of load arm to effort arm (RLE) is flexibly adjusted to enlarge the detection range. The mechanical force is induced by attaching a capillary on the MBR stem and applying the downward displacement, which deforms the MBR’s radius and thus shifts the resonance wavelength. The dependence of the capillary displacement on the mechanical force is theoretically deduced and verified. Experimentally, the sensors with different RLEs are built, and the maximum sensitivity of −10.48 pm/mN with a resolution of 40 µN is obtained. The achieved detection range is 0–4 mN, which depends on the capillary displacement and RLE of the lever. With the merits of easy fabrication and flexible structure, the proposed sensor shows great potential in biomedical and structural health monitoring.

Funder

National Natural Science Foundation of China

111 Project

Advanced Optical Waveguide Intelligent Manufacturing and Testing Professional Technical Service Platform of Shanghai

Science and Technology Commission of Shanghai Municipality

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3