Super diffraction limit spectral imaging detection and material type identification of distant space objects

Author:

Jiang Chunxu1,Tan YongORCID,Qu Guannan,Lv Zhong,Gu Naiwei2,Lu Weijian2,Zhou Jianwei,Li Zhenwei3,Xu Rong4,Wang Kailin5,Shi JingORCID,Xin Mingsi,Cai Hongxing

Affiliation:

1. Baicheng Normal University

2. The 15th Institute of the First Aerospace Academy

3. Chinese Academy of Sciences

4. State Key Laboratory of Astronautic Dynamics

5. Beijing Aerospace Control Center

Abstract

The image information of distant objects shows a diffuse speckle pattern due to diffraction limit, non-uniform scattering, etc., which is difficult to achieve object discrimination. In this study, we have developed a staring spectral video imaging system mounted on a ground-based telescope observation platform to detect the high orbit space objects and gain their spectral images for six groups of GEO targets. The speckle remains basically the same characteristic as the projection structure of the object due to “the balloon inflation phenomenon of near parallel light during long-distance atmospheric transmission” under the premise of considering the bi-directional reflection distribution function (BRDF), Rayleigh scattering theory, and the memory effect. Based on this phenomenon, a mathematical model of remote target scattering spectrum imaging is established where the speckle can be treated as both a global speckle and speckle combination of texture blocks caused by various components of the target. The radial basis function (RBF) neural network is separately used to invert the global speckle and the speckle combination of the texture blocks on account of the typical target material database. The results show that the target materials are of relatively fewer kinds in the global inversion with only including gallium arsenide panel (GaAs) and carbon fiber (CF), for which the highest goodness of curve fitting is only 77.97. An improved algorithm makes their goodness of fit reach 90.29 and 93.33, respectively, in view of one conjecture that the target surface contains unknown materials. The spectral inversion result of the texture blocks shows that the types of materials in each target texture block increase significantly, and that the area ratio of different materials inverted in the block is different from each other. It is further confirmed that the speckle image contains the overall projection structure of distant target and the spectral image projection of each component is relatively fixed, which is the result of the comprehensive action of various mechanisms of ultra-long-haul atmospheric transmission and optical system focusing imaging after BRDF spectral scattering. The spectral image fine inversion is expected to restore the clear structure of the target. This discovery provides important support for the remote imaging and identification of distant and ultra-diffractive targets.

Funder

Natural Science Foundation of Jilin Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3