Simulation method for multi-source information fusion space target

Author:

Yang Songzhou12ORCID,Zhang Yu,Zhao Bin,Meng Yao12,Ren Dianwu,Zhang Jian12,Sun Gaofei12,Du Zongyu,Zhang GuoYu12ORCID

Affiliation:

1. Jilin Province Engineering Research Center

2. Ministry of Education

Abstract

Current space target simulation systems suffer from limitations, such as a single simulated spectral band, inability to allocate spectral ratios between bands, and poor imaging quality of multi-spectral simulated images. We propose a multi-source information fusion spatial target simulation method system that features a “series-parallel” hybrid connection. We optimize the design of a multi-spectral common aperture optical system and experimentally verify the proposed method. The experimental results show that the proposed system can simulate a wide range of spectral bands ranging from ultraviolet to long-wave infrared. Furthermore, it achieves precise control over the ratio of simulated radiant energy among spectral bands, with a spectral simulation error of less than 4.8%. Notably, it effectively images stars against the cosmic background and spacecraft across different spectral bands. This system serves as a theoretical cornerstone and provides crucial technological support for performance testing and rapid iterative development of multi-source information fusion space exploration systems.

Funder

111 Project

Jilin Provincial Scientific and Technological Development Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3