Photonic crystal based interferometric design for label-free all-optical sensing applications

Author:

Giden Ibrahim Halil1ORCID

Affiliation:

1. ASELSAN Academy

Abstract

Optical sensing devices has a great potential in both industrial and biomedical applications for the detection of biochemicals, toxic substances or hazardous gases thanks to their sustainability and high-selectivity characteristics. Among different kinds of optical sensors based on such as fibers, surface plasmons and resonators; photonic crystal (PC) based optical sensors enable the realization of more compact and highly efficient on-chip sensing platforms due to their intriguing dispersive relations. Interferometric devices based on PCs render possible the creation of biochemical sensors with high sensitivity since a slight change of sensor path length caused by the captured biochemicals could be detected at the output of the interferometer via the interferences of separated beams. In this study, a new type of Mach-Zehnder Interferometer (MZI) using low-symmetric Si PCs is proposed, which is compatible with available CMOS technology. Intended optical path difference between the two MZI channels is provided by the periodic alignments of symmetry-reduced PC unit cells in the MZI arms. Unlike the conventional symmetrical PC based MZIs, Fano resonances exist for the proposed MZI design, i.e. transmission dips and peaks appear in the output spectrum, and the location of dip and peak frequencies in transmission spectra can be efficiently controlled by utilizing interference phenomenon. Exploiting this effect, any refractive index change at the surrounding medium could be distinctly observed at the transmission spectra. In the view of such results, it is convenient to say that the proposed MZI configuration is suitable for efficient optical sensing of toxic gases as well as liquids. The designed all-dielectric MZI system is numerically investigated in both spectral and spatial domains to analyze its interferometric tunability: an optical sensitivity of about 300 nm/RIU is calculated for gaseous analytes whereas that sensitivity value is around 263.2 nm/RIU in the case of liquid analytes. Furthermore, high quality factor of Q > 45000 is obtained at Fano resonances with Figure-of-Merit (FoM) value of FoM ∼ 8950 RIU−1(7690 RIU−1) in the case of gas analytes (liquid analytes), which is the indication of enhanced optical sensing performance of the proposed MZI design. Considering all the above-mentioned advantages, the proposed interferometric configurations based on low-symmetric PCs could be utilized for efficient photonic sensor applications that require controllable output power or sensing of gaseous and liquid substances.

Funder

ASELSAN

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3