Detection of Harmful Chemical Compounds in Plastic Products Using a High‐Sensitivity Photonic Crystal‐Based Sensor

Author:

Taya Sofyan A.1ORCID,Srour Samer M.1,Almawgani Abdulkarem H. M.2,Hindi Ayman Taher2,Colak Ilhami3,Patel Shobhit K.4

Affiliation:

1. Physics Department Islamic University of Gaza P.O. Box 108 Gaza Palestine

2. Electrical Engineering Department College of Engineering Najran University Najran Kingdom of Saudi Arabia

3. Department of Electrical and Electronics Engineering Nisantasi University Istanbul Turkey

4. Department of Computer Engineering Marwadi University Rajkot 360003 India

Abstract

The use of plastics can be dangerous due to the numerous industrial chemicals they contain. Di(2‐ethylhexyl) phthalate (DEHP), bisphenol A (BPA), and bisphenol S (BPS) are three detrimental organic chemicals that are used in the plastic industry. In this work, a highly sensitive photonic crystal (PCL) sensor is theoretically proposed and numerically simulated as a detector for DEHP, BPA, and BPS organic chemicals. The proposed PCL is a 1D that has the structure (GaAs/Si3N4/TiN)N/cavity layer/(GaAs/Si3N4/TiN)N, where N is the number of unit cells (UCs). The DEHP, BPA, and BPS analytes are assumed to be separately infiltrated into the cavity layer between two equal numbers of the UCs. The transmission spectra of the PCL are studied using the transfer matrix (TrMx) technique. The most important performance parameter is sensitivity so we have focused on it. A considerable sensitivity enhancement is obtained by raising the defect layer thickness and incidence angle. High sensitivities of 2350.51, 2168.45, and 2042.08 nm RIU−1 are obtained for DEHP, BPA, and BPS, respectively. In the results obtained, the way can be paved for a simple technique to detect chemical compounds.

Funder

Najran University

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3