Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: assessment of atmospheric correction algorithms and depth derivation models in shallow waters

Author:

Duan Zhixin1ORCID,Chu Sensen1,Cheng Liang1,Ji Chen1,Li Manchun1,Shen Wei2

Affiliation:

1. Nanjing University

2. Shanghai Ocean University

Abstract

Satellite-derived bathymetry (SDB) has an extensive prospect in nearshore bathymetry for its high efficiency and low costs. Atmospheric correction and bathymetric modeling are critical processes in SDB, and examining the performance of related algorithms and models will contribute to the formulation of reliable bathymetry strategies. This study explored the effectiveness of three general atmospheric correction algorithms, namely Second Simulation of a Satellite Signal in the Solar Spectrum (6S), Atmospheric correction for OLI ‘lite’ (ACOLITE), and QUick Atmospheric Correction (QUAC), in depth retrieval from Landsat-8 and Sentinel-2A images using different SDB models over Ganquan Island and Oahu Island. The bathymetric Light Detection and Ranging (LiDAR) data was used for SDB model training and accuracy verification. The results indicated that the three atmospheric correction algorithms could provide effective corrections for SDB. For the SDB models except log-transformed band ratio model (LBR) and support vector machine (SVM), the impact of different atmospheric corrections on bathymetry was basically the same. Furthermore, we assessed the performance of six different SDB models: Lyzenga’s model (LM), generalized additive model (GAM), LBR, SVM, multilayer perceptron (MLP), and random forest (RF). The bathymetric accuracy, consistency of bathymetric maps and generalization ability were considered for the assessment. Given sufficient training data, the accuracy of the machine learning models (SVM, MLP, RF) was generally superior to that of the empirical inversion models (LM, GAM, LBR), with the root mean square error (RMSE) varied between 0.735 m to 1.177 m. MLP achieved the best accuracy and consistency. When the depth was deeper than 15 m, the bathymetry error of all the SDB models increased sharply, and LM, LBR and SVM reached the upper limit of depth retrieval capability at 20–25 m. In addition, LM and LBR were demonstrated to have better adaptability in heterogeneous environment without training data.

Funder

National Natural Science Foundation of China

National Science Foundation for Post-doctoral Scientists of China

National Key Research and Development Program of China

Guangxi Innovative Development Grand Grant

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3