Affiliation:
1. University of Stuttgart
Abstract
3D printing of micro-optics has recently become a very powerful fabrication method for sub-millimeter sized optics. Miniature optical systems and entire optical instruments such as endoscopes have become possible with this technique. 3D printed complex micro-optical systems are printed in one single process, rather than being assembled. This precludes anti-reflection coating of the individual lenses before assembly by conventional coating methods such as sputtering or directed plasma etching, as voids between the individual lenses cannot be reached by a directed coating beam. We solve this issue by conformal low-temperature thermal atomic layer deposition (ALD) which is compatible with the low glass transition temperature of the utilized 3D printed polymer materials. Utilizing 4-layer designs, we decrease the broadband reflectivity of coated flat substrates in the visible to below 1%. We characterize and investigate the properties of the coatings based on transmission measurements through coated and uncoated 3D printed test samples as well as through a double-lens imaging system. We find that the reflectivity is significantly reduced and conversely the transmission is enhanced, which is of particular interest for low-light applications. Furthermore, the physical durability and resistance against humidity uptake should also be improved.
Funder
Bundesministerium für Bildung und Forschung
H2020 European Research Council
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
Baden-Württemberg Stiftung
Deutsche Forschungsgemeinschaft
Subject
Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献