Laser energy prediction with ensemble neural networks for high-power laser facility

Author:

Lu Zou12,Yuanchao Geng2,Guodong Liu1,Lanqin Liu2,Fengdong Chen1,Bingguo Liu1,Dongxia Hu2,Wei Zhou2,Zhitao Peng2

Affiliation:

1. Harbin Institute of Technology

2. China Academy of Engineering Physics

Abstract

The energy accuracy of laser beams is an essential property of the inertial confinement fusion (ICF) facility. However, the energy gain is difficult to control precisely by traditional Frantz-Nodvik equations due to the dramatically-increasing complexity of the huge optical system. A novel method based on ensemble deep neural networks is proposed to predict the laser output energy of the main amplifier. The artificial neural network counts in 39 more related factors that the physical model neglected, and an ensemble method is exploited to obtain robust and stable predictions. The sensitivity of each factor is analyzed by saliency after training to find out the factors which should be controlled strictly. The identification of factor sensitivities reduces relatively unimportant factors, simplifying the neural network model with little effect on the prediction results. The predictive accuracy is benchmarked against the measured energy and the proposed method obtains a relative deviation of 1.59% in prediction, which has a 2.5 times improvement in accuracy over the conventional method.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3