CNN-based neural network model for amplified laser pulse temporal shape prediction with dynamic requirement in high-power laser facility

Author:

Zou Lu12,Geng Yuanchao2,Liu Bingguo1,Chen Fengdong1,Zhou Wei2,Peng Zhitao2,Hu Dongxia2,Yuan Qiang2,Liu Guodong1,Liu Lanqin2

Affiliation:

1. Harbin Institute of Technology

2. China Academy of Engineering Physics

Abstract

The temporal shape of laser pulses is one of the essential performances in the inertial confinement fusion (ICF) facility. Due to the complexity and instability of the laser propagation system, it is hard to predict the pulse shapes precisely by pure analytic methods based on the physical model [Frantz-Nodvik (F-N) equation]. Here, we present a data-driven model based on a convolutional neural network (CNN) for precise prediction. The neural network model introduces sixteen parameters neglected in the F-N equation based models to expand the representation dimension. The sensitivity analysis of the experimental results confirms that these parameters have different degrees of influence on the temporal output shapes and cannot be ignored. The network characterizes the whole physical process with commonality and specificity features to improve the description ability. The prediction accuracy evaluated by a root mean square of the proposed model is 7.93%, which is better compared to three optimized physical models. This study explores a nonanalytic methodology of combining prior physical knowledge with data-driven models to map the complex physical process by numerical models, which has strong representation capability and great potential to model other measurable processes in physical science.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3