Affiliation:
1. Xi’an University of Technology
2. Harbin University of Science and Technology
3. Zhejiang University
Abstract
The promising prospect of a terahertz metasurface in sensing and detection applications has attracted increasing attention because of its ability to overcome the classical diffraction limit and the enhancement of field intensity. In this work, a novel scheme based on an all-silicon terahertz plasmon metasurface is proposed and experimentally demonstrated to be a highly sensitive biosensor for the Bacillus thuringiensis Cry1Ac toxin. The regression coefficients between Bacillus thuringiensis protein concentrations and the spectral resonance intensity and frequency were 0.8988 and 0.9238, respectively. The resonance amplitude variation and frequency shift of the metasurface were investigated in terms of both thickness and permittivity change of the analyte, which reflected the protein residue in the actual process. Moreover, the reliability and stability of the metasurface chip were verified by time period, temperature, and humidity control. These results promise the ability of the proposed metasurface chip as a Bacillus thuringiensis protein sensor with high sensitivity and stability. In addition, this novel device strategy provides opportunities for the advancement of terahertz functional applications in the fields of biochemical sensing and detection.
Funder
Natural Science Foundation of Shaanxi Province
Youth Innovation Team of Shaanxi Universities
National Natural Science Foundation of China
Open Project of Key Laboratory of Engineering Dielectrics and Its Applications, Ministry of Education
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献