Terahertz sensing with a 3D meta-absorbing chip based on two-photon polymerization printing

Author:

Chen Xueer,Ye Longfang1ORCID,Yu Daquan2

Affiliation:

1. Xiamen University

2. Xiamen Sky Semiconductor Technology Co., Ltd.

Abstract

The narrowband meta-absorbers exhibit significantly enhanced electromagnetic confinement capabilities, showcasing broad application prospects in sensing fields. They can be applied for biomarker detection, chemical composition analysis, and monitoring of specific gas in the environment. In this work, we propose a 3D meta-absorber with an out-of-plane plasma mechanism based on a two-photon printing system. Compared to the conventional fabrication of a metal-insulator-metal 2D meta-absorber, the 3D absorber is composed of a metal layer and a resin layer from top to bottom; its manufacturing process is simpler, only including two-photon printing and magnetron sputtering deposition. A noticeable absorbing resonance appears at 0.3142 THz with perfect absorbance with a high Q-factor of 104.67. The theoretical sensitivity to the refractive index of the sensor reaches up to 172.5 GHz/RIU, with a figure of merit (FOM) of 19.56. In the experiments, it was validated as a meta-absorber with high sensitivity for doxycycline (DCH). As the DCH concentration increases from 0 to 4 mg/mL, the absorption intensity decreases around 49%, while the resonant frequency shift is around 70 GHz. It reflects the real-time residual content of DCH, and is potentially applied in trace antibiotic detection. The results showcase a perfect narrowband absorption capability with strong electromagnetic confinement in the terahertz spectrum, along with high-Q sensing characteristics of DCH. Compared to 2D metamaterials, the diversity of 3D metamaterial significantly expands, and introduces additional effects to provide greater flexibility in manipulating electromagnetic waves. The 3D device offers opportunities for the application of terahertz biochemical sensing.

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3