Broadband high-efficiency plasmonic metalens with negative dispersion characteristic

Author:

Liu Yong-Qiang1ORCID,Zhu Yong1,Yin Hongcheng1,Sun Jinhai1ORCID,Wang Yan1,Che Yongxing1

Affiliation:

1. National Key Laboratory of Scattering and Radiation

Abstract

Controlling the dispersion characteristic of metasurfaces (or metalenses) along a broad bandwidth is of great importance to develop high-performance broadband metadevices. Different from traditional lenses that rely on the material refractive index along the light trajectory, metasurfaces or metalenses provide a new regime of dispersion control via a sub-wavelength metastructure, which is known as negative chromatic dispersion. However, broadband metalenses design with high-performance focusing especially with a reduced device dimension is a significant challenge in society. Here, we design, fabricate, and demonstrate a broadband high-performance diffractive-type plasmonic metalens based on a circular split-ring resonator metasurface with a relative working bandwidth of 28.6%. The metalens thickness is only 0.09λ0 ( λ0 is at the central wavelength), which is much thinner than previous broadband all-dielectric metalenses. The full-wave simulation results show that both high transmissive efficiency above 80% (the maximum is even above 90%) and high average focusing efficiency above 45% (the maximum is 56%) are achieved within the entire working bandwidth of 9–12 GHz. Moreover, an average high numerical aperture of 0.7 ( NA=0.7 ) of high-efficiency microwave metalens is obtained in the simulations. The broadband high-performance metalens is also fabricated and experimental measurements verify its much higher average focusing efficiency of 55% (the maximum is above 65% within the broad bandwidth) and a moderate high NA of 0.6. The proposed plasmonic metalens can facilitate the development of wavelength-dependent broadband diffractive devices and is also meaningful to further studies on arbitrary dispersion control in diffractive optics based on plasmonic metasurfaces.

Funder

National Key Laboratory of Scattering and Radiation

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3