Affiliation:
1. Beijing Institute of Technology
2. Tsinghua University
Abstract
In order to increase signal-to-noise ratio in optical imaging, most detectors sacrifice resolution to increase pixel size in a confined area, which impedes further development of high throughput holographic imaging. Although the pixel super-resolution technique (PSR) enables resolution enhancement, it suffers from the trade-off between reconstruction quality and super-resolution ratio. In this work, we report a high-fidelity PSR phase retrieval method with plug-and-play optimization, termed PNP-PSR. It decomposes PSR reconstruction into independent sub-problems based on generalized alternating projection framework. An alternating projection operator and an enhancing neural network are employed to tackle the measurement fidelity and statistical prior regularization, respectively. PNP-PSR incorporates the advantages of individual operators, achieving both high efficiency and noise robustness. Extensive experiments show that PNP-PSR outperforms the existing techniques in both resolution enhancement and noise suppression.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献