Affiliation:
1. Kunming University of Science and Technology
2. Institut d’Acoustique—Graduate School(IA-GS), Le Mans Université
3. ENSIM, Ecole Nationale Supérieure d’Ingénieurs du Mans
Abstract
The speckle noise generated during digital holographic interferometry (DHI) is unavoidable and difficult to eliminate, thus reducing its accuracy. We propose a self-supervised deep-learning speckle denoising method using a cycle-consistent generative adversarial network to mitigate the effect of speckle noise. The proposed method integrates a 4-f optical speckle noise simulation module with a parameter generator. In addition, it uses an unpaired dataset for training to overcome the difficulty in obtaining noise-free images and paired data from experiments. The proposed method was tested on both simulated and experimental data, with results showing a 6.9% performance improvement compared with a conventional method and a 2.6% performance improvement compared with unsupervised deep learning in terms of the peak signal-to-noise ratio. Thus, the proposed method exhibits superior denoising performance and potential for DHI, being particularly suitable for processing large datasets.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献