Affiliation:
1. South China Normal University
Abstract
Multimode fibers (MMFs) are emerging as promising transmission media for delivering images. However, strong mode coupling inherent in MMFs induces difficulties in directly projecting two-dimensional images through MMFs. By training two subnetworks named Actor-net and Model-net synergetically, [Nature Machine Intelligence 2, 403 (2020)10.1038/s42256-020-0199-9] alleviated this issue and demonstrated projecting images through MMFs with high fidelity. In this work, we make a step further by improving the generalization ability to greyscale images. The modified projector network contains three subnetworks, namely forward-net, backward-net, and holography-net, accounting for forward propagation, backward propagation, and the phase-retrieval process. As a proof of concept, we experimentally trained the projector network using randomly generated phase maps and their corresponding resultant speckle images output from a 1-meter-long MMF. With the network being trained, we successfully demonstrated projecting binary images from MNIST and EMNIST and greyscale images from Fashion-MNIST, exhibiting averaged Pearson’s correlation coefficients of 0.91, 0.92, and 0.87, respectively. Since all these projected images have never been seen by the projector network before, a strong generalization ability in projecting greyscale images is confirmed.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental and Applied Basic Research Project of Guangzhou
Subject
Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献