In pursuit of high‐fidelity waveguide imaging restoration using deep learning algorithms: A review

Author:

Zhou Ruiqi12,Yang Yang12ORCID,Xiao Jiong12,Liu Zihang12,Hao Feifei12,Zeng Jinwei12ORCID,Wang Jian12ORCID

Affiliation:

1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information Huazhong University of Science and Technology Wuhan Hubei China

2. Optics Valley Laboratory Wuhan Hubei China

Abstract

AbstractWaveguide imaging is considered as one of the most important and widely used techniques in biomedical endoscopic applications. Recently, many attempts have been made to develop ever miniaturised in vivo imaging devices for minimally invasive clinical inspections. However, miniaturisation implies using a smaller optical aperture waveguide, which may introduce pixilation artefacts and pixel‐to‐pixel distortion to deteriorate overall imaging quality. To overcome the constraints imposed by miniaturised waveguides, the deep learning algorithms can be an effective tool to cure the imaging distortion via post‐processing, which already had encouraging results in many scenes of automatic machine‐learnt imaging restoration. The authors introduce the waveguide imaging transmission and the restoration algorithms, and then discuss their possible combinations. The results show that the integration of advanced waveguides and optimised algorithms can achieve unprecedented imaging restoration than before. In the future, in order to fill the need for high‐quality reconstructed images, we should not only improve ability of software to optimise restoration algorithms but also correspondingly concern hardware progress in waveguides. The practical sense of it is to help researchers better master and take advantage of these combinations to make next generation high‐fidelity endoscopes.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3