Light management in ultra-thin photonic power converters for 1310 nm laser illumination

Author:

Nouri Neda1ORCID,Valdivia Christopher E.1,Beattie Meghan N.1ORCID,Krich Jacob J.1,Hinzer Karin1

Affiliation:

1. University of Ottawa

Abstract

We designed and optimized ultra-thin single junction InAlGaAs photonic power converters (PPC) with integrated back reflectors (BR) for operation at the telecommunications wavelength of 1310 nm and numerically studied the light trapping capability of three BR types: planar, cubic nano-textured, and pyramidal nano-textured. The PPC and BR geometries were optimized to absorb a fixed percentage of the incident light at the target wavelength by coupling finite difference time-domain (FDTD) calculations with a particle swarm optimization. With 90% absorptance, opto-electrical simulations revealed that ultra-thin PPCs with 5.6- to 8.4-fold thinner absorber layers can have open circuit voltages (Voc) that are 9-12% larger and power conversion efficiencies (PCE) that are 9-10% (relative) larger than conventional thick PPCs. Compared to a thick PPC with 98% absorptance, these ultra-thin designs reduce the absorber layer thickness by 9.5-14.2 times while improving the Voc by 12-14% and resulting in a relative PCE enhancement of 3-4%. Of the studied BR designs, pyramidal BRs exhibit the highest performance for ultra-thin designs, reaching an efficiency of 43.2% with 90% absorptance, demonstrating the superior light trapping capability relative to planar and cubic nano-textured BRs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3