Active control of resonant asymmetric transmission based on topological edge states in paired photonic crystals with a Ge2Sb2Te5 film

Author:

Ge Zekun,Sang TianORCID,Li Shi,Luo Chen,Wang Yueke

Abstract

For many high-precision applications such as filtering, sensing, and photodetection, active control of resonant responses of metasurfaces is crucial. Herein, we demonstrate that active control of resonant asymmetric transmission can be realized based on the topological edge state (TES) of an ultra-thin Ge2Sb2Te5 (GST) film in a photonic crystal grating (PCG). The PCG is composed of two pairs of one-dimensional photonic crystals (PCs) separated by a GST film. The phase change of the GST film re-distributes the field distributions of the PCG; thus active control of narrowband asymmetric transmission can be achieved due to the switch of the on–off state of the TES. According to multipole decompositions, the appearance and disappearance of the synergistically reduced dipole modes are responsible for the high-contrast asymmetric transmission of the PCG. In addition, the asymmetric transmission performances are robust to the variation of structural parameters, and good unidirectional transmission performances with a high peak transmission and high contrast ratio can be balanced, as the layer number of the two PCs is set as four. By changing the crystallization fraction of GST, the peak transmission and peak contrast ratio of asymmetric transmission can be flexibly tuned with the resonance locations kept almost the same.

Funder

National Natural Science Foundation of China

Major Projects of Science and Technology Commission of Shanghai

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3