Active strong coupling of exciton and nanocavity based on GSST-WSe2 hybrid nanostructures

Author:

Wu Lijuan1,Huang Jing1,You Shaojun1,Gao Chenggui23,Zhou Chaobiao1

Affiliation:

1. Guizhou Minzu University

2. Guizhou University

3. Guizhou Education University

Abstract

The strong coupling between optical resonance microcavity and matter excitations provides a practical path for controlling light-matter interactions. However, conventional microcavity, whose functions are fixed at the fabrication stage, dramatically limits the modulation of light-matter interactions. Here, we investigate the active strong coupling of resonance mode and exciton in GSST-WSe2 hybrid nanostructures. It is demonstrated that significant spectral splitting is observed in single nanostructures, tetramers, and metasurfaces. We further confirm the strong coupling by calculating the enhanced fluorescence spectra. The coupling effect between the excited resonance and exciton is dramatically modulated during the change of GSST from amorphous to crystalline, thus realizing the strong coupling switching. This switching property has been fully demonstrated in several systems mentioned earlier. Our work is significant in guiding the study of actively tunable strong light-matter interactions at the nanoscale.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Project

Natural Science Foundation of Guizhou Minzu University

Science and Technology Innovation Team Project of Guizhou Colleges and Universities

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3