Channel transformer U-Net: an automatic and effective skeleton extraction network for electronic speckle pattern interferometry

Author:

Li Biyuan1,Li Zhuo1,Zhang Jun1,Sun Gaowei1,Mei Jianqiang1,Yan Jun2

Affiliation:

1. Tianjin University of Technology and Education

2. Tianjin University

Abstract

The fringe skeleton extraction method may be the most straightforward method for electronic speckle pattern interferometry (ESPI) phase extraction. Due to ESPI fringe patterns having the characteristics of high noise, low contrast, and different fringe shapes, it is very difficult to extract skeletons from ESPI fringe patterns with high accuracy. To deal with this problem, we propose a skeleton extraction method based on deep learning, called channel transformer U-Net, for directly extracting skeletons from noisy ESPI fringe patterns. In the proposed method, the advanced channel-wise cross fusion transformer module is integrated into the design of deep U-Net architecture, and a loss function by combining binary cross entropy loss and poly focal loss is proposed. In addition, a marking algorithm is proposed for phase extraction, which can realize automatic identification of a skeleton line. The effectiveness of the above proposed algorithms has been verified by computer-simulated and real-dynamic ESPI measurements. The experimental results demonstrate that the proposed channel transformer U-Net can obtain accurate, complete, and smooth skeletons in all cases. The accuracy of the skeleton extraction obtained by our proposed network can reach 0.9878, and the correlation coefficient value can reach 0.9905. The skeleton line automatic marking algorithm has strong universality.

Funder

Foundations of Research Start-up Fund of Tianjin University of Technology and Education

Natural Science Research Project of Tianjin Education Commission

Scientific Research Project of Tianjin Education Commission

Natural Science Foundation of Tianjin City

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3