Generalized denoising network LGCT-Net for various types of ESPI wrapped phase patterns

Author:

He Hongxuan,Tang Chen,Liu Le,Zhang Liao,Lei Zhenkun1ORCID

Affiliation:

1. Dalian University of Technology

Abstract

In this paper, we propose a generalized network based on our proposed Local-Global Channel Transformer (LGCT) module for denoising various types of ESPI wrapped phase patterns (including low-density, medium-density, high-density, variable-density, and discontinuous phase patterns). The Conv + BN + ReLU layer consists of convolution (Conv), batch normalization (BN), and the rectified linear unit (Relu) in series. The generalized network LGCT-Net interleaves four LGCT modules with five Conv + BN + ReLU layers in a dense connection manner. We propose the LGCT Module by stacking three Dilated-Group Convolution blocks (DGC block), a Contextual Transformer block (CoT block), and an Efficient Channel Attention block (ECA block). The LGCT module simultaneously leverages the local context extraction capability of convolutions and the powerful global information extraction capability of a transformer. Additionally, it performs feature extraction in both spatial and channel dimensions. We also create a diverse ESPI wrapped phase pattern denoising dataset with various densities, shapes, noise levels, and discontinuity. We successfully train the LGCT-Net without any preprocessing or postprocessing steps. We evaluate the performance of our method on simulated and experimental ESPI wrapped phase patterns with discontinuity and different densities. Then we compare it with previously published denoising methods PEARLS, HDCNN, ADCNN, and DBDNet quantitatively and qualitatively. The results show that our method facilitates the reduction of speckle noise and the enhancement of fine details while preserving structure and shape, outperforming the compared methods. In the end, we apply our method to dynamic measurements of nuclear graphite ESPI phase patterns at different times. And then performing phase unwrapping on the filtered phase patterns, we achieve successful results.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3