Affiliation:
1. Ministry of Education and Shanxi Province
2. Guangdong University of Technology
3. Ministry of Education
Abstract
Semiconductor lasers with delayed optical feedback are a promising source of optical chaos for practical applications, owing to simple configurations that are easy to integrate and synchronize. However, for traditional semiconductor lasers, the chaos bandwidth is limited by the relaxation frequency to several gigahertz. Here, we propose and experimentally demonstrate that a short-resonant-cavity distributed-feedback (SC-DFB) laser can generate broadband chaos only with simple feedback from an external mirror. The short distributed-feedback resonant cavity not only enhances laser relaxation frequency but also makes the laser mode more susceptible to external feedback. Experiments obtained a laser chaos with 33.6 GHz bandwidth and a spectral flatness of 4.5 dB. The corresponding entropy rate is estimated as more than 33.3 Gbit/s. It is believed that the SC-DFB lasers will promote development of chaos-based secure communication and physical key distribution.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Program of Shanxi Province
Development Fund in Science and Technology of Shanxi Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献