Physical-layer key distribution based on commonly-driven laser synchronization with random modulation of drive light

Author:

Mo Laihong1ORCID,Wang Anbang2,Sun Yuehui2ORCID,Xu Junpei,Zhang Yuhe,Zhang Xinhui2,Qin Yuwen2ORCID,Wang Yuncai2

Affiliation:

1. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)

2. Guangdong University of Technology

Abstract

We propose and experimentally demonstrate a physical-layer key distribution scheme using commonly-driven laser synchronization with random modulation of drive light. Two parameter-matched semiconductor lasers injected by a common complex drive light are used as entropy sources for legitimate users. Legitimate users generate their own random signal by randomly time-division multiplexing of two random sequences with a certain duration according to individual control codes, and then independently modulate the drive light. Laser synchronization is achieved during time slots when the modulation sequences of two users are identical, and thus provide highly correlated randomness for extracting random numbers as shared keys. Experimental results show that the random modulation of the drive light reduces the correlation between the drive light and laser outputs. In addition, laser synchronization is sensitive to the modulation delay and then the latter can be used as an additional hardware parameter. These mean that security is enhanced. In addition, the proposed method has a short laser synchronization recovery time of lower than 1.1 ns, meaning a high rate of key distribution. The upper limit of final key rate of 2.55 Gb/s with a criterion of bit error rate of 1.68 × 10−3 is achieved in experiments. Our results provide a promising candidate for protecting the security of optical fiber communication.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Program for Guangdong Introducing Innovative and Enterpreneurialeams

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3